Репликация ДНК - это процесс ее удвоения перед делением клетки. Иногда говорят «редупликация ДНК». Удвоение происходит в S-фазе интерфазы клеточного цикла .

Очевидно, самокопирование генетического материала в живой природе есть необходимость. Только так дочерние образующихся при делении клетки могут содержать столько же ДНК, сколько его изначально было в исходной. Благодаря репликации все генетически запрограммированные особенности строения и метаболизма передаются в ряду поколений.

В процессе деления клетки каждая молекула ДНК из пары идентичных отходит в свою дочернюю клетку. Таким образом обеспечивается точная передача наследственной информации.

При синтезе ДНК потребляется энергия, т. е. это энергозатратный процесс.

Механизм репликации ДНК

Молекула ДНК сама по себе (без удвоения) представляет собой двойную спираль. В процессе редупликации водородные связи между двумя ее комплементарными цепями разрываются. И на каждой отдельной цепи, которая теперь служит шаблоном-матрицей, строится новая комплиментарная ей цепь. Таким образом образуются две молекулы ДНК. У каждой одна цепь достается ей от материнской ДНК, вторая - вновь синтезированная. Поэтому механизм репликации ДНК является полуконсервативным (одна цепь старая, одна новая). Такой механизм репликации был доказан в 1958 году.

В молекуле ДНК цепи антипараллельны. Это значит, что одна нить идет в направлении от 5" конца к 3", а комплементарная ей - наоборот. Цифры 5 и 3 обозначают номера атомов углерода в дезоксирибозе, входящей в состав каждого нуклеотида. Через эти атомы нуклеотиды связаны между собой фосфодиэфирными связями. И там, где у одной цепи 3" связи, у другой - 5", так как она перевернута, т. е. идет в другом направлении. Для наглядности можно представить, что вы положили руку на руку, как первоклашка, сидящий за партой.

Основной фермент, который выполняет наращивание новой нити ДНК, способен делать это только в одном направлении. А именно: присоединять новый нуклеотид только к 3" концу. Таким образом, синтез может идти только в направлении от 5" к 3".

Цепи антипараллельны, значит синтез должен идти на них в разных направлениях. Если бы цепи ДНК сначала полностью расходились, а потом на них уже строилась новая комплементарная, то это не было бы проблемой. В действительности же цепи расходятся в определенных точках начала репликации , и в этих местах на матрицах сразу начинается синтез.

Формируются так называемые репликационные вилки . При этом на одной материнской цепи синтез идет в сторону расхождения вилки, и этот синтез происходить непрерывно, без разрывов. На второй матрице синтез идет в обратную сторону от направления расхождения цепей исходной ДНК. Поэтому такой обратный синтез может идти только кусками, которые называются фрагментами Оказаки . Позже такие фрагменты «сшиваются» между собой.

Дочерняя цепь, которая реплицируется непрерывно, называется лидирующей, или ведущей . Та, которая синтезируется через фрагменты Оказаки, - запаздывающей, или отстающей , так как фрагментарная репликация выполняется медленнее.

На схеме нити родительской ДНК постепенно расходятся в направлении, в котором идет синтез ведущей дочерней цепи. Синтез отстающей цепи идет в обратную расхождению сторону, поэтому вынужден выполняться кусками.

Другой особенностью основного фермента синтеза ДНК (полимеразы) является то, что он не может сам начать синтез, только продолжить. Ему необходима затравка, или праймер . Поэтому на родительской нити сначала синтезируется небольшой комплементарный участок РНК, потом уже происходит наращивание цепи с помощью полимеразы. Позже праймеры удаляются, дыры застраиваются.

На схеме затравки показаны только на отстающей цепи. На самом деле они есть и на лидирующей. Однако здесь нужен только один праймер на вилку.

Поскольку цепи материнской ДНК не всегда расходятся с концов, а в точках инициализации, то на самом деле формируются не столько вилки, сколько глазки, или пузыри.

В каждом пузыре может быть две вилки, т. е. цепи будут расходиться в двух направлениях. Однако могут только в одном. Если все же расхождение двунаправлено, то из точки инициализации на одной нити ДНК синтез будет идти в двух направлениях - вперед и назад. При этом в одну сторону будет выполняться непрерывный синтез, а в другую - фрагментами Оказаки.

ДНК прокариот не линейна, а имеет кольцевую структуру и лишь одну точку начала репликации.

На схеме красным и синим цветом показаны две нити родительской молекулы ДНК. Новые синтезирующиеся нити показаны пунктиром.

У прокариот самокопирование ДНК выполняется быстрее, чем у эукариот. Если скорость редупликации у эукариот составляет сотни нуклеотидов в секунду, то у прокариот достигает тысячи и более.

Ферменты репликации

Репликацию ДНК обеспечивает целый комплекс ферментов, который называется реплисомой . Всего ферментов и белков репликации более 15. Ниже перечислены наиболее значимые.

Основным ферментом репликации является уже упомянутая ДНК-полимераза (на самом деле существует несколько разных), которая непосредственно осуществляет наращивание цепи. Это не единственная функция фермента. Полимераза способна «проверять», какой нуклеотид пытается присоединиться к концу. Если неподходящий, то она его удаляет. Другими словами, частичная репарация ДНК, т. е. ее исправление ошибок репликации, происходит уже на этапе синтеза.

Нуклеотиды, находящиеся в нуклеоплазме (или цитоплазме у бактерий), существуют в форме трифосфатов, т. е. это не нуклеотиды, а дезоксинуклеозидтрифосфаты (дАТФ, дТТФ, дГТФ, дЦТФ). Они похожи на АТФ , у которой три фосфатных остатка, два из которых связаны макроэргической связью. При разрыве таких связей выделяется много энергии. Также и у дезоксинуклеозидтрифосфатов две связи макроэргические. Полимераза отделяет два последних фосфата и использует выделяющуюся энергию на реакцию полимеризации ДНК.

Фермент хеликаза разделяет нити матричной ДНК, разрывая водородные связи между ними.

Поскольку молекула ДНК представляет собой двойную спираль, то разрыв связей провоцирует еще большее ее скручивание. Представьте канат из двух закрученных относительно друг друга веревок, и вы с одной стороны за концы тянете одну вправо, другую - влево. Сплетенная часть станет еще больше скручиваться, будет более тугой.

Для устранения подобного напряжения необходимо, чтобы еще неразошедшаяся двойная спираль быстро крутилась вокруг своей оси, «сбрасывая» возникающую сверхспирализацию. Однако это слишком энергозатратно. Поэтому в клетках реализуется другой механизм. Фермент топоизомераза разрывает одну из нитей, пропускает через разрыв второю и снова сшивает первую. Чем и устраняются возникающие супервитки.

Разошедшиеся в результате действия хеликазы нити матричной ДНК пытаются опять соединиться своими водородными связями. Чтобы этого не произошло, в действие вступают ДНК-связывающие белки . Это не ферменты в том понимании, что реакций они не катализируют. Такие белки прикрепляются к нити ДНК на всем ее протяжении и не дают комплементарным цепям матричной ДНК сомкнуться.

Праймеры синтезируются РНК-праймазой . А удаляются экзонуклеазой . После удаления праймера «дыру» застраивает другой тип полимеразы. Однако при этом отдельные участки ДНК не сшиваются.

Отдельные части синтезируемой цепи сшиваются таким ферментом репликации как ДНК-лигаза .

Уважаемые старшеклассники! Эта рабочая тетрадь написана для того, чтобы вы научились отвечать на самые разные по типам и формулировкам вопросы. Часто их называют «Тестовыми заданиями». Для того, чтобы успешно это делать, необходимо знать, какие бывают задания, чем отличается один тип заданий от другого. Первая тема рабочей тетради имеет следующие части: обучающую, тренировочную и контрольную. Остальные темы содержат только тренировочную и контрольную части (зачеты). В обучающей части показаны примеры рассуждений, даются ответы на большинство вопросов и комментарии к ним. В тренировочной части ответы также приводятся, однако объяснить правильность выбора должны вы сами. Для этого в свободных строках нужно дописать необходимые аргументы, опровергающие неверные ответы. Заполненные строки подскажут логику рассуждений.
Наконец, в контрольной части вам полностью и самостоятельно нужно выполнить работу. Используя тетрадь при изучении курса «Общая биология», вы научитесь правильно понимать смысл задания, самостоятельно задавать вопросы и отвечать на них, доказывать правильность своих ответов и опровергать неверные ответы. В обучающей и тренировочной частях вы познакомитесь с заданиями разного уровня сложности, чаще всего встречающимися в разных проверочных работах. Контрольная часть также включает как совсем простые, так и более сложные вопросы. Практически все вопросы и задания направлены на подготовку к сдаче различных форм экзаменов, но, прежде всего, ЕГЭ. Именно с этим связана и такая структура, и такая форма рабочей тетради. Она рассчитана не только на индивидуальную, но и на совместную работу с учителем или с одноклассниками.

Виды заданий, встречающиеся в проверочных, контрольных, экзаменационных работах (примеры заданий цитируются по демонстрационной версии ЕГЭ 2007 г.)

Обучающая часть

Приступая к работе с тетрадью, внимательно изучите примеры заданий разных видов. Научитесь их узнавать. Тестовые задания делятся на следующие виды.

1. Задания с выбором одного правильного ответа из нескольких.

Отвечая на подобный вопрос необходимо очень внимательно его прочитать и точно понять его смысл. О чем спрашивается в вопросе? О признаках научного метода исследования. Что является этими признаками? Особенности строения и число хромосом. Можно ли обнаружить эти признаки, не проникая в клетку? Нет, нельзя. Какой из перечисленных методов позволяет проникнуть в клетку с помощью микроскопа? Только цитогенетический. Значит это и будет правильным ответом.
Можно выбрать и другой, более длинный, путь рассуждений, вспоминая особенности других методов исследования.

Выбор правильного ответа на этот вопрос может быть как предельно простым, так и достаточно сложным. Если вы точно поняли смысл вопроса и знаете, что хроматида отличается от молекулы ДНК по своей структуре и образуется в процессе деления клетки в интерфазе митоза, то выбор прост – правильный ответ – 1.
Сомнения могут привести к следующим рассуждениям: пункты 2 и 3 достаточно очевидны, и их нельзя выбирать в качестве правильного ответа. В неделящейся клетке хроматиды не образуются, а кольцевая молекула ДНК, существующая в бактериальной клетке, не обладает структурой хроматиды. Могут смутить пункты 1 и 4, т.к. память подсказывает, что хромосома состоит из двух хроматид, а молекула ДНК – из двух цепей. Вот тут и следует еще раз прочитать вопрос и вдуматься в его смысл. ДНК – это часть хроматиды, поэтому правильный ответ – 1.

2. Задания с выбором нескольких правильных ответов.

Для выполнения задания с выбором нескольких правильных ответов нужно хорошо помнить признаки объекта или уметь делать выводы на основании уже имеющейся у вас информации. Данный вопрос требует от вас как точного знания, памяти, так и умения вывести правильные ответы на основании имеющейся у вас информации. Сначала попытайтесь выбрать те пункты, в которых вы уверены. Например, вы точно знаете, что все клетки имеют цитоплазму. Следовательно, первый выбранный пункт – 2. Все клетки покрыты клеточной мембраной, либо их органоиды имеют мембранное строение. Значит и пункт 4 можно выбрать в качестве правильного. Логика подсказывает, что не может существовать клетка без белков, ибо любая живая система использует белки в качестве структурного компонента. Но эти белки должны синтезироваться, а значит должен быть аппарат, на котором проходит биосинтез. Это рибосомы. Значит и ответ 6 верен.

Вы можете выбрать и другой путь рассуждения, но в целом он будет похож на предложенный нами.

3. Задания на сопоставление объекта с его свойствами, особенностями

Соотнести, сопоставить – это значит связать между собой объект и его свойства, качества. Так, например, объектом может быть определенная наука – анатомия или физиология, а его свойствами – предмет изучения науки, т.е. те явления или процессы, которые она изучает.

Задания этого типа требуют от вас такой операции, как выбор признаков для сравнения объектов. Отвечая на эти вопросы, необходимо воспользоваться знаниями, которые у вас есть. Некоторые из них вы приобрели не только на уроках, но и в результате жизненного опыта. Например, вы хорошо знаете, что лягушки развиваются в воде, большинство из них гладкие и скользкие. Вот уже два признака земноводных вы можете отметить. Вы также знаете, что крокодилы, змеи, черепахи и ящерицы откладывают яйца на суше и не заботятся о своем потомстве. Значит, в яйцах должен быть большой запас питательных веществ. Лягушки мечут икру. Это хорошо известный факт. А вот какое у них оплодотворение, следует подумать. Однако в вопросе есть слова «у большинства видов». Если знать, что у пресмыкающихся оплодотворение всегда внутреннее, то понятно, что пункт Б относится к земноводным. С детства вы знаете, что лягушка проходит несколько стадий развития: из яйца появляется головастик, который затем превращается во взрослое земноводное. У пресмыкающиеся таких превращений не происходит. Проанализировав этот комментарий, вы сами можете назвать правильные ответы.

4. Задания на определение последовательности событий, явлений, процессов

При выполнении таких заданий надо уметь представить себе процесс или действие, о котором идет речь. Кроме того, всегда надо искать в вопросе указание, с какого пункта следует начать выстраивать последовательность. Если такого указания нет значит, эта последовательность может быть только строго определенной.

Отвечая на это вопрос, надо определить начальный и конечный моменты процесса. В данном случае конечный момент очевиден – это пункт Д. Вопрос может возникнуть о последовательности пунктов А и Б, но нужно знать, что любые биохимические реакции начинаются с действия ферментов. Следовательно, начальный этап – Б. Тогда раскручивание молекулы – это второй этап (А), далее последовательность становится понятной – сначала разделение частей (В), а затем наращивание новых (Г). Таким образом, ответ: БАВГД.

5. Задания со свободным ответом

C1. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, объясните их.

Этот вопрос требует от вас точного знания признаков царства грибов. Первое предложение не содержит ошибок. В нем нет противоречий ни по одному пункту. Во втором предложении такие противоречия есть. Все ли грибы – многоклеточные организмы? Нет, не все. Дрожжи – это одноклеточные грибы. Также допущены ошибки в 3 и 4 предложениях. Среди грибов автотрофных организмов нет. Они не способны ни к фотосинтезу, ни к хемосинтезу. Наконец, надо помнить, что стенки клеток грибов образованы хитином, а не целлюлозой. Таким образом, правильные ответы на вопросы подобного типа связаны с применением имеющихся знаний и поиском противоречий в вопросе.

Это достаточно сложный вопрос, потому что следует решить, какие признаки нужно назвать. Как должно выглядеть обоснование ответа? Прежде всего, следует помнить, что не нужно отвечать на вопросы слишком пространно. Чем лаконичнее ответ, тем лучше. Он должен быть максимально точен. Приступим к рассуждениям. Какие противоречия необходимо разрешить растениям при выходе из воды на сушу? Первое, что становится очевидным, – защита от потерь воды. В водной среде эта проблема решена. Значит должны быть приспособления, регулирующие процесс испарения. Это устьица, а впоследствии кутикула, видоизмененные листья. Дальше надо вспомнить о том, что растениям необходимо было поднимать воду на определенную высоту. Значит, нужна проводящая система, которая действительно возникла у первых наземных растений. Водные растения были подвижны и эластичны. Их тело колебалось под влиянием течений, но не ломалось. На суше необходимо выдерживать напоры ветра. Поэтому должны были появиться механические ткани, а также органы, закрепляющие растение в почве, – ризоиды, корни, корневища.

Следовательно, ответ может быть таким.

1. Возникновение покровной ткани (эпидермиса с устьицами), способствующей защите от испарения.
2. Появление проводящей системы, обеспечивающей транспорт веществ.
3. Развитие механической ткани, выполняющей опорную функцию.
4. Образование ризоидов, с помощью которых растения закреплялись в почве.

Тренировочная часть

В этой части вы познакомитесь с приемами анализа вопроса, научитесь комментировать как правильные, так и неправильные ответы. Этот опыт покажет вам, что с помощью тестовых заданий можно не только проверять свои знания, но и учиться отвечать на вопросы разных типов.

Тема: «Основные закономерности явлений наследственности»

Моно- и дигибридное скрещивание

Дополните комментарии к ответам.

А10. Какое потомство получится при скрещивании комолой гомозиготной коровы (ген комолости В доминирует) с рогатым быком:

А11. У кареглазого мужчины и кареглазой женщины родились три кареглазых девочки и один голубоглазый мальчик. Ген карих глаз доминирует. Каковы генотипы родителей?

Варианты ответов

1) отец АА, мать Аа
2) отец аа , мать АА
3) отец аа , мать Аа
4) отец Аа , мать Аа

Какой углевод входит в состав нуклеотидов РНК?

1) рибоза2) глюкоза3) урацил4) дезоксирибоза

2) К полимерам относятся:

1) крахмал, белок, целлюлоза 3) целлюлоза, сахароза, крахмал

2) белок, гликоген, жир 4) глюкоза, аминокислота, нуклеотид.

3) Ученый, открывший клетку:

1) Р.Гук; 3) Т. Шванн

2); Р.Броун 4) М. Шлейден

4. Найдите правильное продолжение выражения «фотолиз воды происходит внутри...»:

1) митохондрий на стенках крист; 3) пластид, в строме;

2) пластид, в тилакоидах; 4) мембран ЭПС.

5. В течение световой фазы фотосинтеза растение использует световую энергию для образования:

1) АТФ из АДФ и Ф; 3) НАДФ + + Н 2 -> НАДФ Н;

2) Глюкозы и углекислого газа; 4) О 2 из СО 2 .

6.Темновые реакции фотосинтеза протекают в:

а)строме хлоропластов; в)мембранах тилакоидов;

б)рибосомах хлоропластов; г)гранах.

Что общего между фотосинтезом и процессом окисления глюкозы?

1) оба процесса происходят в митохондриях;

2) оба процесса происходят в хлоропластах;

3) в результате этих процессов образуется глюкоза;

4) в результате этих процессов образуется АТФ.

8. В результате какого процесса органические вещества об­разуются из неорганических?

1)биосинтез белка; 3) синтез АТФ;

2)фотосинтез; 4) гликолиз.

9. Энергетически ценным продуктом анаэробного гликолиза являются две молекулы:

1) молочной кислоты; 3) АТФ;

2) пировиноградной кислоты; 4) этанола.

10. Какой из нуклеотидов не входит в состав ДНК:

1) тимин; 2) урацил; 3) аденин; 4) цитозин

При половом размножении появляется

1) меньшее разнообразие генотипов и фенотипов, чем при бесполом

2) большее разнообразие генотипов и фенотипов, чем при бесполом

3) менее жизнеспособное потомство

4) потомство, менее приспособленное к среде обитания

Каждая новая клетка происходит от такой же путем её

1) деления 3) мутации

2) адаптации 4) модификации

Закладка органов в эмбриональном развитии млекопитающих происходит на этапе

1) бластулы 3) дробление

2) нейрулы 4) гаструлы

Из каких зародышевых структур образуется нервная система и эпидермис кожи животных?

1)мезодермы 3) энтодермы

2)эктодермы 4) бластометров

Деление ядра при размножении происходит у

1) амебы обыкновенной 3) стафилококка

2) холерного вибриона 4) бациллы сибирской язвы

Генетическая информация родителей объединяется в потомстве при размножении

1) почкованием 3) семенами

2) вегетативном 4) спорами

17. Число хромосом при половом размножении в каждом поколении возрастало бы вдвое, если бы в ходе эволюции не сформировался процесс:

18. Первая анафаза мейоза завершается:

1) расхождением к полюсам гомологичных хромосом;

2) расхождение хроматид;

3) образованием гамет;

4) кроссинговером.

19. ДНК клетки несет информацию о строении:

1) белков, жиров и углеводов; 3) аминокислот;

2) белков и жиров; 4) ферментов.

20. Ген кодирует информацию о структуре:

1) нескольких белков;

2) одной из комплиментарных цепей ДНК;

3) аминокислотной последовательности в одной молекуле белка;

4) одной аминокислоты.

21. При репликации одной молекулы ДНК синтезируются новые цепи. Их количество в двух новых молекулах равно:

1) четырем; 2) двум; 3) одному; 4) трем.

22. Если в молекуле ДНК 20% составляют цитозиновые нуклеотиды, то процент тиминовых нуклеотидов равен:

1) 40%; 2) 30%; 3) 10%; 4) 60%.

23.Трансляцией называется процесс:

1) образование и-РНК; 3) образование белковой цепи на рибосоме;

2) удвоение ДНК; 4) соединения т-РНК с аминокислотами.

24. Какой закон проявится в наследовании признаков при скрещивании

организмов с генотипами: Аа х Аа?

1) единообразия 3) сцепленного наследования

2) расщепления 4) независимого наследования

25. Укажите особенности модификационной изменчивости.

1) возникает внезапно

2) проявляется у отдельных особей вида

3) изменения обусловлены нормой реакции

4) проявляется сходно у всех особей вида

5) носит адаптивный характер

6) передаётся потомству

Соотнесите вещества и структуры, участвующие в синтезе белка, с их функциями, проставив рядом с цифрами нужные буквы.

Установите в какой последовательности происходит процесс редупликации ДНК

А) раскручивание спирали молекулы

Б) воздействие ферментов на молекулу

В) отделение одной цепи от другой на части молекулы ДНК

Г) присоединение к каждой цепи ДНК комплементарных нуклеотидов

Д) образование двух молекул ДНК из одной

выберите правильные утверждения: 1.белки составляют большую часть веществ клетки 2.при расщеплении одинакового кол-ва жира и углеводов

выделяется равное кол-во энергии

3.пептидной называют связь между углеродом карбоксильной группы и азотом аминогруппы в молекуле белка

4.основная функция рибосом участие в биосинтезе белка

5.в основе селекционного процесса лежит естественный отбор

6.в неделящейся клетке нет хромосом

7. количество митохондрий и пластид может увеличиваться только путем деления этих органоидов

8.вакуоли имеются только в растительных клетках

9.по принципу комплементарности комплементарными являются А-У и Г-Ц

10.спиртовое брожение может проходить только в отсутствии кислорода

11.ассимиляция и диссимиляция составляют энергетический обмен в организме

12.мейоз происходит в семенниках человека в зоне размножения

13.гамета всегда содержит только один ген

14.норма реакции наследуется

15.внешняя среда не может изменить характер формирования признака

Помогите! Вопросов много, ничего не успеваю.. Ответьте хотя бы на то, что знаете

81. Энергетический обмен не может идти без пластического, так как пластический обмен поставляет для энергетического
82. В чем состоит сходство молекул ДНК и РНК
83. На какой стадии эмбрионального развития объем многоклеточного зародыша не превышает объема зиготы
84. Объясните, почему при половом размножении появляется более разнообразное потомство, чем при вегетативном.
85 Чем гетерозиготы отличаются от гомозигот
86. Установите, в какой последовательности происходит процесс редупликации ДНК.
87. Установите последовательность соподчинения систематических категорий у животных, начиная с наименьшей.
88. Установите последовательность действия движущих сил эволюции в популяции растений, начиная с мутационного процесса
89. Организмы, которым для нормальной жизнедеятельности необходимо наличие кислорода в среде обитания, называют
90. Какие виды топлива – природный газ, каменный уголь, атомная энергия способствуют созданию парникового эффекта
91. Объясните, почему при половом размножении появляется более разнообразное потомство, чем при вегетативном.
92. Чем характеризуется биологическое разнообразие.
93 Объясните, почему людей разных рас относят к одному виду. Ответ поясните.
94. Почему клетку считают функциональной единицей живого
95. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагментмолекулы ДНК, на котором синтезируется участок центральной петли тРНК,имеет следующую последовательность нуклеотидов: АТАГЦТГААЦГГАЦТ.Установите нуклеотидную последовательность участка тРНК, которыйсинтезируется на данном фрагменте, и аминокислоту, которую будет переноситьэта тРНК в процессе биосинтеза белка, если третий триплет соответствуетантикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
96. Метод изучения наследственности человека, в основе которого лежит изучение числа хромосом, особенностей их строения, называют
97 Молекулы АТФ выполняют в клетке функцию
98. Обмен веществ между клеткой и окружающей средой регулируется
99. Исходным материалом для естественного отбора служит
100. В связи с выходом на сушу у первых растений сформировались
101. При партеногенезе организм развивается из
102. Сколько видов гамет образуется у дигетерозиготных растений гороха при дигибридном скрещивании (гены не образуют группу сцепления)
103. При скрещивании двух морских свинок с черной шерстью(доминантный признак) получено потомство, среди которого особи с белойшерстью составили 25%. Каковы генотипы родителей5
104. Мутационная изменчивость, в отличие от модификационной
105. Грибы опята, питающиеся мертвыми органическими остатками пней,поваленных деревьев, относят к группе
106. Признак приспособленности птиц к полету
107. Череп человека отличается от черепа других млекопитающих
108. При умственной работе в клетках мозга человека усиливается
109. Совокупность внешних признаков особей относят к критерию вида
110. Пример внутривидовой борьбы за существование
111. Приспособленность организмов к среде обитания – результат
112. У человека в связи с прямохождением
113. К абиотическим факторам среды относят
114. Причинами смены одного биогеоценоза другим являются
115. Необходимое условие устойчивого развития биосферы
116. Матрицей для трансляции служит молекула
117. Число хромосом при половом размножении в каждом поколении возрастало бы вдвое, если бы в ходе эволюции не сформировался процесс
118. Количество групп сцепления генов у организмов зависит от числа
119. Чистая линия растений – это потомство120. Энергия, необходимая для мышечного сокращения, освобождается при

Какие процессы протекают во время мейоза?

1)
транскрипция
2)
редукционное деление
3)
денатурация
4)
кроссинговер
5)
конъюгация
6)
трансляция

В соответствии с клеточной теорией единицей роста и размножения организмов считают
1)
клетку
2)
особь
3)
ген
4)
гамету
Синтез белка происходит на
1)
аппарате Гольджи
2)
рибосомах
3)
гладкой эндоплазматической сети
4)
лизосомах
Согласно клеточной теории, клетки всех организмов
1)
сходны по химическому составу
2)
одинаковы по выполняемым функциям
3)
имеют ядро и ядрышко
4)
имеют одинаковые органоиды
Наличие билипидного слоя в плазматической мембране обеспечивает её
1)
связь с органоидами
2)
способность к активному транспорту
3)
устойчивость и прочность
4)
избирательную проницаемость
Из приведенных формулировок укажите положение клеточной теории.
1)
Оплодотворение - это процесс слияния мужской и женской гамет.
2)
Онтогенез повторяет историю развития своего вида.
3)
Дочерние клетки образуются в результате деления материнской.
4)
Половые клетки образуются в процессе мейоза.

Углекислый газ используется в качестве источника углерода в таких реакциях обмена веществ, как
1)
синтез липидов
2)
синтез нуклеиновых кислот
3)
хемосинтез
4)
синтез белка
Установите, в какой последовательности в первом делении мейоза протекают процессы.
А)
коньюгация гомологичных хромосом
Б)
разделение пар хромосом и перемещение их к полюсам
В)
образование дочерних клеток
Г)
расположение гомологичных хромосом в экваториальной плоскости
Значение митоза состоит в увеличении числа
1)
хромосом в половых клетках
2)
клеток с набором хромосом, равным материнской клетке
3)
молекул ДНК по сравнению с материнской клеткой
4)
хромосом в соматических клетках

Процессы жизнедеятельности у всех организмов протекают в клетке, поэтому её рассматривают как единицу
1)
размножения
2)
строения
3)
функциональную
4)
генетическую

Матрица – материнская цепочка ДНК.

Продукт – новосинтезированная цепочка дочерней ДНК.

Комплементарность между нуклеотидами материнской и дочерней цепочек ДНК двойная спираль ДНК раскручивается на две одинарных, затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности.

Транскрипция (синтез РНК)

Матрица – кодирующая цепочка ДНК.

Продукт – РНК.

Комплементарность между нуклеотидами кДНК и РНК.

В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности стоится иРНК. Затем она отсоедииняется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка)

Матрица – иРНК

Продукт – белок

Комплементарность между нуклеотидами кодонов иРНК и нуклеотидами антикодонов тРНК, приносящих аминокислоты.

Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

    инициация репликации

    элонгация

    терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтоминициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон.

Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационнаявилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация.

    Особенности организации генома эукариот и прокариот. Классификация нуклеотидных последовательностей: уникальные, среднеповторяющиеся, высокоповторяющиеся. Регуляция экспрессии генов у эукариот.

Главная количественная особенность генетического материала эукариот – наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК – экзонов). В то же время размер генома человека 3×10 9 (три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК. Существует значитель­ное число видов, геном которых в десятки раз больше ге­нома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть не­однозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хро­мосом данного вида.

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с по­мощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1.Уникальные , т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2.Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3.Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы , число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) не кодирующие последовательности, которые входят в состав прицентромерногогетерохроматина.

Уэукариот объем наследственного материала значительно больше. В отличие отпрокариот в эукариотических клетках одновременно активно транскрибируется от 1 до 10% ДНК. Состав транскрибируемых последовательностей и их количество зависят от типа клетки и стадии онтогенеза. Значительная часть нуклеотидных последовательностей у эукариот не транскрибируется вообще - молчащая ДНК.

Большой объем наследственного материала эукариот объясняется существованием в нем помимо уникальных также умеренно и высоко повторяющихся последовательностей. Эти высоко повторяющиеся последовательности ДНК располагаются в основном в гетерохроматине, окружающем центромерные участки. Они не транскрибируются. Характеризуя наследственный материал прокариотической клетки в целом, необходимо отметить, что он заключен не только в нуклеоиде, но также присутствует в цитоплазме в виде небольших кольцевых фрагментов ДНК -плазмид.

Плазмиды - это широко распространенные в живых клетках внехромосомные генетические элементы, способные существовать и размножаться в клетке автономно от геномной ДНК. Описаны плазмиды, которые реплицируются не автономно, а только в составе геномной ДНК, в которую они включаются в определенных участках. В этом случае их называют эписомами.

В прокариотических (бактериальных) клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.

В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл - митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки (вирусоподобными частицами). Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами. В митохондриях, например содержится от 2 до 10 копий мтДНК.

Внехромосомная ДНК составляет лишь небольшую часть наследственного материала эукариотической клетки.

    Особенности экспрессии генетической информации у прокариот. Оперонная модель регуляции экспрессии генов у прокариот Ф. Жакоба и Ж. Моно.

Современная теория регуляции экспрессии генов у прокариот была предложена французскими исследователями Ф.Жакобом и Ж.Моно, которые исследовали биосинтез у E.сoli ферментов, метаболизирующих лактозу. Обнаружено, что при культивировании E.сoli на глюкозе содержание ферментов, метаболизирующих лактозу, минимально, но при замене глюкозы на лактозу происходит взрывоподобное усиление синтеза ферментов, расщепляющих лактозу на глюкозу и галактозу, и обеспечивают последующий метаболизм последних. У бактерий существуют ферменты 3-х типов:

а) конститутивные, которые присутствуют в клетках в постоянных количествах, независимо от их метаболического состояния;

б) индуцибельные – их количество в клетках при обычных условиях незначительно, но может увеличиваться в сотни и тысячи раз, если в культуральную среду добавлять субстраты этих ферментов;

в) репрессабельные – ферменты, синтез которых в клетке прекращается при добавлении в среду конечных продуктов тех метаболических путей, где функционируют эти ферменты. На основании этих фактов и была сформулирована теория оперона. Оперон – это комплекс генетических элементов, отвечающих за координированный синтез ферментов, которые катализируют ряд последовательных реакций. Различают индуцибельные опероны, активатор которых - исходный субстрат метаболического пути. При отсутствии субстрата белок-супрессор блокирует оператор и не дает РНК-полимеразе транскрибировать структурные гены. При появлении субстрата определенное его количество связывается с белком- репрессором, тот теряет сродство к оператору и покидает его. Это приводит к разблокированию транскрипции структурных генов. Репресабельные опероны – для них регулятором служит конечный метаболит. В его отсутствии белок- репрессор имеет низкое сродство к оператору и не мешает считыванию структурных генов (ген включен). При накоплении конечного метаболита, определенное его количество связывается с белком-репрессором, который приобретает повышенное сродство к оператору и блокирует транскрипцию генов.

    Классификация генов: структурные, функциональные (гены-модуляторы, ингибиторы, интенсификаторы, модификаторы); гены, регулирующие работу структурных генов (регуляторы и операторы), их роль в реализации наследственной информации.

Классификация генов:

    Структурные

    Функциональные

А) гены-модуляторы – усиливают или подавляют проявления других генов;

Б) ингибиторы - вещества, тормозящие какой либо биологический процесс;

В) интенсификаторы

Г) модификаторы - ген, усиливающий или ослабляющий действие главного гена и неаллельный ему

3) ген-регулятор – его функция заключается в регуляции процесса транскрипции структурного гена (или генов);

4) ген-оператор - расположен рядом со структурным геном (генами) и служит местом связывания репрессора.

Ген - материальный носитель наследственной информации, совокупность которых родители передают потомкам во время размножения. В настоящее время, в молекулярной биологии установлено, что гены - это участки ДНК, несущие какую-либо целостную информацию - о строении одной молекулыбелка или одной молекулы РНК. Эти и другие функциональные молекулы определяют рост и функционирование организма.

    Аллель гена. Множественные аллели как результат изменения нуклеотидной последовательности гена. Полиморфизм гена как вариант нормы и патологии. Примеры.

Аллель - конкретная форма существования гена, занимающая определённое место в хромосоме, ответственное за признак и его развитие.

Полигенное наследование не подчиняется законам Менделя и не соответствует классическим типам аутосомно-доминантного, аутосомно-рецессивного наследования и наследования, сцепленного с X-хромосомой.

1. Признак (заболевание) контролируется сразу несколькими генами. Проявление признака во многом зависит от экзогенных факторов.

2. К полигенным болезням относятся расщелина губы (изолированная или с расщелиной неба), изолированная расщелина неба, врожденный вывих бедра, стеноз привратника, дефекты нервной трубки (анэнцефалия, позвоночная расщелина), врожденные пороки сердца.

3. Генетический риск полигенных болезней в большой степени зависит от семейной предрасположенности и от тяжести заболевания у родителей.

4. Генетический риск значительно снижается с уменьшением степени родства.

5. Генетический риск полигенных болезней оценивают с помощью таблиц эмпирического риска. Определить прогноз нередко бывает сложно.

    Ген, его свойства (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия). Примеры.

Ген -структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойств.

Ген как единица функционирования наследственного материала имеет ряд свойств:

    дискретность - несмешиваемость генов;

    стабильность - способность сохранять структуру;

    лабильность - способность многократно мутировать;

    множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

    аллельность - в генотипе диплоидных организмов только две формы гена;

    специфичность - каждый ген кодирует свой признак;

    плейотропия - множественный эффект гена;

    экспрессивность - степень выраженности гена в признаке;

    пенетрантность - частота проявления гена в фенотипе;

    амплификация - увеличение количества копий гена.

    Независимое и сцепленное наследование признаков. Хромосомная теория наследственности.

Наряду с признаками, наследуемыми независимо, обнаружены признаки, наследуемые совместно (сцепленно). Экспериментальное наследование этого явления, проведенное Т.Г. Морганом и его группой (1910-1916), подтвердило хромосомную локализацию генов и легло в основу хромосомной теории наследственности.