«Ну, конечно, воскликнула она,

это же Зазеркальная книга.

Если я поднесу ее к Зеркалу,

Я смогу ее прочесть»

Л. Кэрролл «Алиса в Зазеркалье»

Пространственное строение многих органических молекул связано с существованием оптических изомеров.

Условием образования оптических изомеров является наличие в молекуле атомов углерода в sp 3 -гибридном состоянии, каждый из которых связан с 4 различными заместителями.


В этом случае молекула не обладает плоскостью симметрии и она не совместима со своим зеркальным отражением.

Пространственные оптические изомеры (показана их несовместимость)

Такое вещество обладает оптической активностью, изомеры называются оптическими .

Атом углерода, связанный с 4 различными заместителями(обозначают С*), принято называть асимметричным, оптически активным, хиральным (от греч –cheir -рука, кисти руки являются зеркально отраженными друг другу).

А А оптические изомеры(энантиомеры)

| | в плоскостном изображении

В- С*- D D - C*- В ( плоскостные проекции

| | Фишера)

зеркальная плоскость


Два вещества, полные зеркальные изомеры, носят название энантиомеры.

Если в молекуле один хиральный атом, то два стереоизомера изомера всегда являются энантиомерами.

Общее количество изомеров у молекулы, содержащей несколько асимметрических атомов углерода, зависит от числа хиральных атомов(хиральных центров):

(N - общее количество изомеров, n – число хиральных атомов в молекуле)

Для изображения на плоскости оптических изомеров природных биоактивных молекул(аминокислот, гидроксикислот, моносахаров) используют проекции Фишера:

На плоскость проецируют тетраэдрическую конфигурацию

Относительно асимметрического атома углерода записывают 4 заместителя,

вверху- старшую из всех групп, внизу - радикал, справа и слева – атомы водорода и

функциональные группы(амино, гидрокси, меркапто. галоген) .

Структурные формулы отражают существование молекулы в виде двух изомеров, принадлежащих к стереорядам D и L(D –правый, L – левый)

Запишем формулу 2-гидроксипропановой(молочной) кислоты в виде двух стереоизомеров.

СН 3 - СН - СООН COOH COOH

OH H - C* - OH HO -C* - H

D - лактат L – лактат

Вещество относится к D -ряду , если переход от атома водорода к гидроксигруппе(или любой функциональной) через старшую группу совпадает с движением стрелки на часах.

Вещество относится к L -ряду , если переход от атома водорода к гидроксигруппе(или любой функциональной) через старшую группу осуществляется против движения стрелки на часах.


Как правило, температуры плавления, кипения и другие физико-химические свойства энантиомеров не отличаются Отличить их друг от друга можно только с помощью поляризованного луча света, энантиомеры вращают угол плоскости поляризованного луча на одну величину, но в противоположные стороны. Отклонение плоскости поляризованного луча можно измерить с помощью прибора поляриметра. Если для полного скрещения призм ручку анализатора требуется повернуть вправо, то изомерную форму вещества называют правовращающей (+ d ), а если влево- левовращающей (-l ) .

Знак вращения – свойство вещества. Отнесение к D, L - стереорядам- условный прием, знак вращения и стереоряд не связаны между собой.

Определить истинную конфигурацию вещества, т.е.сделать соотнесение « знак вращения- стереоряд» можно, используя конфигурационный стандарт М.А.Розанова .

В качестве стандарта используют D и L –глицериновый альдегид. Оказалось, что

(+d )-глицериновый альдегид соответствует D -стереоряду, а (- l )- соответствует -L -стереоряду.

H - C* - OH HO -C* - H

СН 2 ОН СН 2 ОН

(+) D –глицеиновый альдегид (-) L –глицериновый альдегид

Биологически активное соединение(знак вращения его определяется с помощью поляриметра) путем химических реакций превращают в глицериновый альдегид (+ d или - l). Самая значительная трудность состоит в том, чтобы асимметрический атом углерода не изменил конфигурацию на противоположную в процессе химических реакций.

Равная по массе или по количеству вещества смесь двух энантиомеров является оптически неактивной. Такую смесь называют рацемической.

Особый случай составляют вещества, в которых несколько хиральных атомов углерода, но и есть ось симметрии. В этом случае число энантиомеров изменяется и возникает внутренний рацемат – мезоформа. Примером является винная кислота-

2,3-дигидроксибутандиовая.

НООС - СН - СН - СООН

Изучение гидроксикислот имело исключительно большое значение для развития науки о пространственном строении молекул – стереохимии . Особенностью пространственного строения многих гидроксикислот является наличие атома углерода, имеющего четыре различных заместителя. Например, молочная кислота:

Такие атомы называются ассимметрическими углеродными атомами или хиральными (хиральными центрами). В формулах асимметрические углеродные атомы обозначаются звездочкой.

Молекулы, имеющие асимметрические углеродные атомы, могут быть представлены в виде двух пространственных изомеров, различающихся как предмет и его зеркальное отображение:

Изомеры, отличающиеся друг от друга только расположением атомов в пространстве, называются стереоизомерами . Расположение атомов, характеризующее определенный стереоизомер, называется конфигурацией . Стереоизомеры, различающиеся как предмет и его зеркальное отражение называются энантиомерами . Энантиомеры являются оптически активными веществами – они способны вращать плоскость поляризации света. Причем из пары энантиомеров один вращает плоскость поляризации вправо. Такой изомер называется правовращающим и обозначается знаком (+). Другой изомер вращает плоскость поляризации влево. Такой изомер называется левовращательным и обозначается знаком (-). Изомеры, отличающиеся только знаком вращения, называются оптическими антиподами .

При изображении оптически активных соединений пользуются проекционными формулами, представляющими собой проекции тетраэдрических моделей соответствующих молекул на плоскость чертежа:

При изображении проекционных формул принимается, что группы, расположенные сверху и снизу, находятся за плоскостью чертежа, а группы, расположенные слева и справа – перед плоскостью чертежа. Поэтому формулы нельзя поворачивать в плоскости чертежа на 90 0 и можно поворачивать на 180 0 . Например:

Соединения 1 и 2 являются оптическими антиподами, поскольку 2 получено путем поворота 1 на 90 0 . Формула 3 получена из 1 поворотом на 180 0 , поэтому 3 эквивалентно 1 .

Для направления и величины вращения плоскости поляризации не существует определенных закономерностей взаимосвязи со строением оптически активных соединений. Можно отмечать как факт, что молочная кислота, содержащаяся в мышцах, вращает плоскость поляризации вправо и известна как правовращающая (+). Также как факт принимается то, что молочная кислота, образующаяся при брожении сахарозы в присутствии бактерий, вращает плоскость поляризации влево и называется левовращающей (-).

Какими-либо химическими методами невозможно установить, как в молекулах оптических изомеров атомы расположены относительно друг друга, соответственно невозможно установить, какова природная или абсолютная конфигурация оптически активного вещества.

Химики могли ограничиться только установлением конфигурации оптически активных веществ относительно какого-либо оптически активного вещества, принятого за стандарт. Соответственно пространственное строение оптически активных веществ характеризовалось относительной конфигурацией . Основой для такого подхода было то, что можно провести превращение вещества, принятого за стандарт, в интересующее вещество таким образом, чтобы конфигурация асимметрического атома углерода не нарушалась.

В 1906 году в качестве стандарта был избран глицериновый альдегид, поскольку он является простейшим полигидроксикарбонильным соединением, способным к оптической изомерии. Правовращающему глицериновому альдегиду была приписана следующая конфигурация, обозначенная как «D»:

Соответственно его оптическому антиподу была приписана следующая конфигурация и обозначена как «L»:

В 1951 году методами рентгеноструктурного анализа было показано, что выбранная наугад абсолютная конфигурация глицеринового альдегида оказалась правильной.

По абсолютной конфигурации глицеринового альдегида были установлены относительные конфигурации других оптически активных веществ. Так, относительная конфигурация молочной кислоты была установлена по D-(+)-глицериновому альдегиду следующим образом:

Окислением альдегидной группы в карбоксильную и восстановлением гидроксиметиленовой группы в метильную было установлено, что D-конфигурации соответствует левовращающая молочная кислота.

Подобным образом были установлены относительные конфигурации многих веществ.

Так, для оптически активной яблочной кислоты, вращающей плоскость поляризации вправо, установлена следующая конфигурация относительно D-(+)-глицеринового альдегида:

При обработке D-(+)-яблочной кислоты пятихлористым фосфором получается L-(-) хлорянтарная кислота:

Т.е. при этом произошло обращение конфигурации.

Если на L-(-) хлорянтарную кислоту подействовать влажной окисью серебра, то получается L-(-)-яблочная кислота:

Однако, если яблочную кислоту получить присоединением воды к фумаровой или малеиновой кислоте, то получается продукт, не обладающий оптической активностью:

Так как строение яблочной кислоты обусловливает обязательную оптическую активность, то в случае гидратации непредельных кислот получается смесь равных количеств двух оптических изомеров.

Совокупность равных количеств энантиомеров называется рацемической модификацией илирацематом .

Рассмотренные три случая различаются по механизмам образования продуктов. Рацемическая модификация образуется в том случае, если реакция протекает через стадию устойчивого карбкатиона, атака которого возможна с двух сторон.

Если атака карбкатиона возможна только с одной стороны, то продукт сохраняет конфигурацию. Такой случай возможен в дикарбоновых кислотах, где за счет взаимодействия карбоксильных групп доступ к реакционному центру возможен только с одной стороны.

При нуклеофильном замещении, протекающем по механизму S N 2, происходит обращение конфигурации – так называемое Вальденовское обращение.

Усложнение строения оптически активных веществ повлекло необходимость систематизации обозначений конфигурации, что привело к появлению R, S-системы. Согласно этой системе, сначала определяют старшинство, или последовательность заместителей, связанных асимметрическим атомом, исходя из правил старшинства.

1. Если с асимметрическим атомом углерода связаны четыре различных атома, то старшинство определяется порядковым номером в таблице Менделеева: чем больше номер, тем старше заместитель.

2. Если старшинство нельзя определить по первым атомам, связанным с асимметрическим атомом, то старшинство аналогично определяют по вторым атомам и т.д.

3. Если атомы, связанные с асимметрическим атомом углерода, имеют разное количество заместителей, построенных из атомов с одинаковым порядковым номером, то старшим является атом, имеющий большее число заместителей.

4. Если атом соединен двумя или тремя связями, то его считают за два атома. Из этого следует, что СООН старше СНО и СНО старше СН 2 ОН.

После определения старшинства молекулу располагают таким образом, чтобы самая младшая группа была направлена от наблюдателя, и рассматривают расположение оставшихся групп. Если старшинство убывает по часовой стрелке, то конфигурацию обозначают символом «R»– от латинского слова «правый». Если старшинство убывает против часовой стрелки, то конфигурацию обозначают символом «S» – от латинского слова «левый».

При этом R, S-система отражает абсолютную конфигурацию асимметрического атома углерода. Согласно этой системе, энантиомеры глицеринового альдегида будут обозначены следующим образом:

Полное название оптически активного соединения отражает конфигурацию и направление вращения. Рацемическую модификацию можно обозначать символом (R, S), например: (R,S)-яблочная кислота.

Каждому асимметрическому атому углерода соответствуют два антипода и один рацемат. Общая формула количества оптических изомеров N =2 n , где n – число асимметрических атомов углерода. Однако для дигидроксиянтарной кислоты, имеющей два хиральных центра

наблюдается аномалия.

Дигидроксиянтарные кислоты называются винными кислотами . Оптически активные изомеры винной кислоты можно изобразить следующими проекционными формулами:

Рацемическая смесь винных кислот (R,S)-винная называется виноградной кислотой. (+)-Винная кислота содержится в соке ягод. Она называется еще виннокаменной, поскольку ее калийная соль выделяется в виде винного камня при брожении виноградного сока. (-)-Винную кислоту получают из виноградной кислоты.

Приведенные примеры говорят о двух изомерах и одном рацемате. По формуле должны быть еще два изомера. Этим изомерам должны соответствовать следующие проекционные формулы:

Если одну из проекционных формул мезовинной кислоты повернуть на 180 0 , то проекции совместятся. Т.е. формулы представляют один и тот же стереоизомер. Его особенностью является то, что вращение, вызываемое одним асимметрическим атомом углерода, компенсируется вращением в противоположную сторону, что обусловлено другим атомом углерода.

В данном случае оптическая неактивность стереоизомера обусловлена симметрией молекулы.

При этом мезовинная кислота не является зеркальным отображением винных кислот. Стереоизмеры, не являющиеся зеркальным отображением, называются диастереомеры .

Оптические изомеры разделяют тремя основными способами. Два первые из них являются исторически сложившимися. Практическое значение в настоящее время имеет третий способ.

1. Если оптически активные вещества можно выделить в форме кристаллов, то обычно эти кристаллы выглядят так же, как предмет и его зеркальное отображение. Именно таким образом Пастер в 1848 году разделил впервые кристаллы натрий-аммонийной соли винной кислоты на две порции кристаллов, отличающихся как предмет и его зеркальное отражение.

2. Микроорганизмы построены из оптически активных веществ, поэтому потребляют обычно один из двух энантиомеров.

3. Кристаллизация диастереомеров.

Особенностью диастереомеров является их различная растворимость в различных растворителях. Поэтому из смеси двух оптических изомеров получают два диастереомера, которые можно разделить кристаллизацией. И далее регенерировать оптически активные вещества. Например, на рацемическую смесь оптически активной кислоты действуют оптически активным основанием. Образуются две диастереомерные соли, которые разделяют кристаллизацией. Далее действуют минеральной кислотой и выделяют исходные кислоты по отдельности. В качестве оснований используют природные вещества, обладающие хиральными центрами.

Аминокислоты

В литературе сплошь и рядом утверждается, что для питания и в качестве структурных элементов нашему метаболизму подходят только левовращающие аминокислоты. Психологически это понятно: природные аминокислоты действительно чаще всего относятся к так называемому L-ряду, а буква L обычно ассоциируется с понятием «левый». Однако такое «отнесение» L-соединений к левовращающим, а соединений D-ряда - к правовращающим абсолютно неверно. Достаточно взглянуть хотя бы на список 23 важнейших аминокислот белка (они приведены, например, в учебнике А. Н. Несмеянова и Н. А. Несмеянова «Начала органической химии»), чтобы убедиться, что левовращающих (для растворов в ледяной уксусной кислоте) - всего лишь семь, меньше трети. Остальные - правовращающие, за исключением оптически неактивного глицина. В «Химической энциклопедии» в списке из 26 наиболее распространенных аминокислот левовращающих и того меньше, всего шесть (23%). Многие путают направление вращения плоскости поляризации света веществом и строение его молекул, которые можно отнести к D- или L-виду.

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры: свет - это волны или частицы. Томас Юнг сформулировал в 1800 году принцип суперпозиции волн и на его основании объяснил явление интерференции света. В 1808 году Этьен Луи Малюс, экспериментируя с кристаллами исландского шпата (кальцита), открыл явление поляризации света. В 1816 году Огюстен Жан Френель высказал идею о том, что световые волны - поперечные. Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландский шпат или турмалин, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Глаз человека лишь в редких случаях и с трудом может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов - поляриметров.

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году Жан Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров -оптически неактивные. Это обнаружил в 1830 году знаменитый немецкий химик Йене Якоб Берцелиус: виноградная кислота С 4 Н 6 0 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

В 1828 году Уильям Николь, используя прозрачные кристаллы исландского шпата, сконструировал поляризатор света - «призму Николя». А осуществив в 1839 году комбинацию двух таких призм, он получил поляриметр - прибор для измерения угла поворота плоскости поляризации света. С тех пор такой поляриметр стал одним из самых распространенных приборов в физических лабораториях.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, после окончания Высшей нормальной школы в Париже 26-летний Пастер работал лаборантом у Антуана Балара (первооткрывателя брома).

В ходе исследования Пастер приготовил раствор кислой натриевой соли виноградной кислоты НООС–CHOH–CHOH–COONa, насытил раствор аммиаком и, медленно выпаривая воду, получил красивые призматические кристаллы тетрагидрата натриево-аммониевой соли Na(NH) 4 C 4 H 4 O 6 ·4H 2 O. Кристаллы эти оказались асимметричными. У части кристаллов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга. Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной. Было непонятно, почему одно исходное вещество дало кристаллы разной формы. Пастер на этом не остановился. Из каждого раствора он осадил нерастворимую свинцовую или бариевую соль, а действуя на эти соли сильной серной кислотой, вытеснил из них более слабую органическую. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая, как мы помним, была неактивной. Каково же было удивление Пастера, когда оказалось, что из одного раствора соли образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась такая же кислота, но вращающая влево! До той поры левовращающую винную кислоту никто не видел! Эти кислоты получили название d -винной для правовращающей разновидности (от лат. dexter - правый) и l -винной для левовращающего изомера (от лат. laevus - левый).

Открытие состояло в том, что давно известная неактивная виноградная кислота оказалась смесью равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому их смесь в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus - виноград; на латыни acidum racemicum - виноградная кислота), а два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. enantios - противоположный). Пастеру повезло: в дальнейшем обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом. Более того, натрий-аммониевая соль винной кислоты, с которой работал Пастер, образует кристаллы разной формы только в том случае, если кристаллизация происходит из раствора, температура которого ниже 28°С. При этом выпадает тетрагидрат. При более высоких температурах из раствора выпадают симметричные кристаллы моногидрата.

Вскоре Пастер открыл также четвертую форму винной кислоты. Она была оптически неактивной, но не являлась рацематом, так как разделить ее на антиподы оказалось невозможно. Пастер назвал эту кислоту мезовинной, от греч. mesos - средний, промежуточный. Пастер нашел еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. И здесь Пастеру повезло. Один из аптекарей аптеки дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер выяснил: бывшая когда-то неактивной кислота стала левовращающей. Зеленый плесневой грибок Penicillum glaucum в растворе разбавленной виноградной кислоты или ее солей «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на «недеятельную» миндальную кислоту, только в данном случае она ассимилирует левовращающий изомер, не трогая правовращающий. Таких случаев стало известно немало. Например, дрожжи сахаромицета эллипсоидального (Saccharomyces ellipsoideus ), в отличие от Penicillum glaucum , «специализируется» на правом изомере миндальной кислоты, оставляя без изменения левый. Другой способ разделения рацематов был химическим. Для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью «выбирало» бы из нее только один энантиомер. Например, оптически активное основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной и кислоты.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф («Химия и жизнь», 2009, № 1). Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Возьмем простейшую аминокислоту аланин: две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука).

В винной кислоте два асимметрических атома углерода. Если оба они будут «правыми», получится правовращающая (+)-винная кислота, если «левыми» - левовращающая (–)-винная, если один «левым», а другой - «правым», то получится мезовинная кислота. Если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах при участии асимметричных агентов (например, ферментов) образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький. Заметим, что на естественный вопрос - как появились на Земле первые оптически активные химические соединения - четкого ответа пока нет.

Проблема абсолютной конфигурации

Раньше не было возможности определить, какова в действительности пространственная конфигурация молекул того или иного оптически активного вещества, например упомянутого выше аланина. Однако чисто химическими методами можно было установить аналогичность конфигураций разных веществ. Например, молекулы правовращающего d -глицеринового альдегида были аналогичны по своей конфигурации молекулам левовращающей l -молочной кислоты и правовращающей d -яблочной кислоты. В 1906 году по предложению М. А. Розанова в качестве стандарта для установления относительной конфигурации оптически активных молекул был выбран глицериновый альдегид. При этом Э. Г. Фишер предложил правовращающему глицериновому альдегиду приписать (чисто произвольно) структуру,

в которой звездочкой обозначен асимметрический атом углерода, связанный с четырьмя разными заместителями. На подобных рисунках две «горизонтальные» связи (в данном случае это связи С–Н и С–ОН) располагаются под плоскостью рисунка, а две «вертикальные» связи (С–СНО и С–СН 2 ОН) - над плоскостью. Такой способ изображения называется проекцией Фишера, названной в честь Эмиля Германа Фишера, второго лауреата Нобелевской премии по химии за 1902 год.

Несколько слов о практически неизвестном у нас Розанове. Мартин Андре Розанов (1874–1951) родился на Украине в семье Абрахама и Клары Розенбергов. После окончания классической гимназии в родном Николаеве продолжил образование в Берлине и Париже, а затем в Нью-Йорке. Работал в Нью-Йоркском университете, затем в Питтсбургском институте Меллона, где ему впервые в истории института была предоставлена пожизненная должность профессора химии. Сестра Мартина Лилиан (1886–1986) была деканом математического факультета в университете Лонг-Айленда; брат Аарон Джошуа был известным американским психиатром, работал в Калифорнии. Среди «нехимических» работ М. А. Розанова выделяется большая статья «Эдисон в своей лаборатории» (1932), в которой автор помимо прочего описал разные забавные случаи, в том числе из опыта своего общения с известным изобретателем.

Изображенную структуру назвали D(+)-глицериновым альдегидом. Соответственно все вещества, стереохимически аналогичные этому альдегиду, стали относить к D-ряду. Оптический антипод этого альдегида был назван L-глицериновым альдегидом, а родственные ему вещества стали относить к L-ряду («+» означает, что плоскость поляризации вращается вправо, «–» - влево):

Глицериновый альдегид - одно из простейших оптически активных соединений, легко получается окислением глицерина, а главное - из него можно путем ряда последовательных асимметрических синтезов получить самые различные соединения. Так устанавливается относительная конфигурация правовращающих винной и яблочной кислот и изосерина, левовращающей молочной кислоты и множества других оптически активных соединений. При альдольной конденсации глицеринового альдегида с дигидроксиацетоном получается смесь фруктозы и сорбозы, которые можно разделить. Понятно, что в ходе таких синтезов абсолютная конфигурация у асимметрического атома углерода должна оставаться неизменной. Так и происходит, если не рвется химическая связь этого атома углерода с одним из соседних заместителей. В противном случае может произойти либо потеря оптической активности (как, например, в реакциях нуклеофильного замещения типа S N 1), либо изменение конфигурации на противоположную. Последний процесс, так называемое вальденовское обращение, происходит, например, в реакциях S N 2; он назван по имени Пауля (Павла Ивановича) Вальдена (1863–1957), открывшего его в 1889 году.

Прописные буквы D и L вместо строчных были приняты для того, чтобы не смешивать конфигурацию вещества, установленную относительно глицеринового альдегида, с направлением вращения плоскости поляризации света этим веществом. Так и получилось, что часть соединений D-ряда вращают вправо, часть - влево, и направление вращения никак не связано с принадлежностью вещества к кому-либо из этих рядов. Например, в природе найдена только D(-)-фруктоза (она же левулоза, потому что вращает плоскость поляризации влево). С другой стороны, и L-, и D-аспарагины - правовращающие аминокислоты. У миндальной кислоты С 6 Н 5 СН(ОН)СООН - два оптических изомера: левовращающий D(–)- и правовращающий L(+)-изомер. Таких примеров множество. Следовательно, нельзя заранее установить отношение между знаком вращения соединения и его конфигурацией: два соединения с одной и той же относительной конфигурацией могут иметь противоположные знаки вращения. И наоборот, сходные соединения с одним и тем же знаком вращения могут иметь противоположные относительные конфигурации.

Прямое определение абсолютной конфигурации молекулы - сложная задача, и в течение длительного времени химики обходились лишь отнесением молекул к D- или L-ряду. И только в середине XX века эта задача была решена Дж. Бейвутом с сотрудниками, которые работали в лаборатории имени Вант-Гоффа Утрехтского университета. Эпохальная работа под названием «Определение абсолютной конфигурации оптически активных веществ методом дифракции рентгеновских лучей» была опубликована 18 августа 1951 года в журнале «Nature ». Авторы путем рентгеноструктурного анализа кристаллов калий-рубидиевой соли D(+)-винной кислоты показали, что Фишер не ошибся, постулировав абсолютную конфигурацию энантиомеров глицеринового альдегида! А это значит, что правильны были установлены не только относительные, но и абсолютные конфигурации всех оптически активных соединений! На самом деле у Фишера было ровно по 50% шансов сделать правильный выбор или ошибиться. Сходная история имела место, когда задолго до открытия электрона выбирали направление для протекания электрического тока. И - ошиблись, выбрав направление от плюса к минусу.

Поскольку в основополагающей исходной публикации Бейвута в журнале Nature не были приведены исходные экспериментальные данные, принципиальным оставался вопрос об обоснованности сделанных выводов, тем более что экспериментальная техника тех времен была далеко не совершенной. В частности, не было компьютеров, без которых сейчас не обходится ни одна работа в области рентгеноструктурного анализа. Чтобы снять все возможные подозрения, сотрудники Центра молекулярной биологии Утрехтского университета Мартин Лутц и М. М. Шроерс предприняли недавно проверку результатов своих коллег более чем полувековой давности с использованием самого современного оборудования. Их работа, опубликованная в августе 2008 года в журнале «Acta Crystallographica », section С: «Crystal Structure Communications », называлась «Был ли прав Бейвут? Повторное исследование тетрагидрата тартрата натрия - рубидия». Для получения монокристалла авторы нагрели раствор (+)-винной кислоты до 60°С и начали по каплям добавлять в него раствор эквимолярной смеси карбонатов натрия и рубидия. Сначала в осадок выпал менее растворимый кислый тартрат рубидия. Затем, когда закончилось выделение углекислого газа, осадок полностью перешел в раствор. При его испарении при комнатной температуре образовался бесцветный порошок, перекристаллизация которого из минимального количества воды дала кристаллы Na + ·Rb + ·C 4 H 4 О 6 2– ·4H 2 О, пригодные для исследования. На вопрос, заданный в заголовке статьи, авторы ответили «да».

Работа Бейвута с сотрудниками 1951 года была поистине эпохальной. Впервые появилась возможность избавиться от некоторого несоответствия в обозначениях D и L, которые указывали только на генетическую связь с глицериновыми альдегидами, но никак не на направление оптического вращения. Такая возможность была осуществлена в 1956 году по предложению Роберта Сидни Кана и Кристофера Келка Ингольда и лауреата Нобелевской премии за 1975 год (совместно с Дж. У. Корнфортом) Владимира Прелога. Их первая статья была опубликована в сравнительно малоизвестном швейцарском журнале «Experientia », и тем не менее предложение получило широкое распространение. Так, оно подробно описывается в учебнике органической химии Луиса и Мэри Физеров (1961, русский перевод 1966). Но наибольшую известность эта система получила после публикации в 1966 году детально разработанной универсальной стереохимической номенклатуры (см. Cahn R.S., Ingold С.К., Prelog V. Specification of Molecule Chirality // Angew. Chem., Int. Ed. Engl. , 1966, 5, 385–415; полный текст - PDF, 3,4 Мб).

Авторы предложили ввести понятие хиральности как свойства объекта быть несовместимым со своим отображением в идеальном плоском зеркале и R S -систему (от лат. rectus -прямой, правильный и sinister - левый) для обозначения хиральности.

Подробное описание применения этого правила к оптически активным соединениям можно найти в учебниках органической химии, а так же в учебнике К. П. Бутина . В нем используется определенное расположение групп вокруг хирального центра - по часовой стрелке, в соответствии со «старшинством» этих групп. В частности, по новой номенклатуре правовращающий D-глицериновый альдегид получает обозначение R. Обозначения R и S добавляют к названию соединения в качестве приставок. Так, энантиомерами 1-бром-1-хлорэтана являются R -1-бром-1-хлорэтан и S -1-бром-1-хлорэтан. Их оптически неактивная рацемическая модификация обозначается R,S -1-бром-1-хлорэтан. Однако по традиции широко используются и старые обозначения D и L, например, для cахаров и аминокислот.

В заключение этого раздела отметим еще одно весьма распространенное заблуждение - о том, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже 2 встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном - в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин. С D-аминокислотами работают, например, на кафедре химической энзимологии химического факультета МГУ. А в 2008 году на биологическом факультете МГУ состоялась защита А. В. Дмитриевым диссертации на соискание степени доктора физико-математических наук на тему «Физико-химические механизмы переноса ионов в природных и хирально модифицированных модельных каналах». Автор изучал, в частности, модифицированные модельные белки, включающие D-аминокислоты. Было показано, что для получения первичной структуры белка с природной функциональностью, построенного из D-аминокислот, достаточно десяти D-аминокислот.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом - лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств - в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастии стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные - рацематы.

Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем вызвать нежелательные побочные эффекты или быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы Т4. А правовращающий R -тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon » для наркотического анальгетика и «Novrad » для противокашлевого препарата.

Как уже отмечалось на примере аминокислоты лейцина, человек - существо хиральное. И это относится не только к его внешнему виду. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S -анаприлин действует в сто раз сильнее, чем R -форма. У антигельминтного препарата левамизола активен в основном в S -изомер, тогда как его R- антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме - диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S -изомера. В то же время R -ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck » разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.

И последний пример. Пеницилламин (3,3-диметилцистеин) - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S -форму препарата, так как R -изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education » за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало».

Илья Абрамович Леенсон,
кандидат химических наук
«Химия и жизнь» №5, 2009

Изомерия – это явление, обусловленное существованием молекул, имеющих одинаковый качественный и количественный состав, но различающихся по химическим и физическим свойствам вследствие неодинакового расположения атомов (или групп атомов) в молекуле или их ориентации в пространстве.

Известно, что свет представляет собой электромагнитные волны, фаза колебания которых, перпендикулярна направлению их распространения. В естественном свете такие колебания происходят во всех возможных плоскостях. Если же луч света пропустить через кристалл, имеющий строго упорядоченное строение (рис 1), то электромагнитные колебания будут совершаться только в одной определенной плоскости. Свет, фаза колебания которого вне этой плоскости, призмой задерживается. Такой луч света называется поляризованным (плоскополяризованным). Плоскость, перпендикулярная плоскости колебаний поляризованного света, является плоскостью поляризации. Обычно в качестве стереорегулярого кристалла используют так называемую призму Николи.

Рис. 1. Схематическое изображение электромагнитных колебаний в луче обыкновенного и поляризованного света; 1 - в обыкновенном свете; 2 - в поляризованном свете; 3 - плоскость поляризации; 4 - призма Николя

Оптически активные соединения «вращают» плоскость поляризации вправо или влево (рис.2). Для обозначения этих вращений используют знаки (+) и (-), которые ставят перед формулой оптического изомера.

Рис. 2. Изменение плоскости поляризации при прохождении поляризованного света через оптически активные вещества: 1 - оптически активное вещество, 2 - первоначальная плоскость поляризации, повернутая на угол α после прохождения света через оптически активное вещество.

Оптическая (зеркальная) изомерия

Оптическая (зеркальная) изомерия обусловлена пространственной асимметрией молекул. Такие молекулы при одинаковом химическом строении не могут быть совмещены в пространстве ни при каких поворотах, подобно тому, как нельзя совместить правую и левую руки. Молекулы, обладающие оптической изомерией, как правило, имеют центр асимметрии. Этот центр называют асимметрическим или хиральным. Хиральный центр имеют соединения содержащие атом углерода в состоянии sp 3 -гибридизации, который содержит четыре разных заместителя: Xabcd.

Заметим что, асимметрические центры могут возникать не только у атома углерода, но и у других атомов, например, серы, азота, фосфора, кремния и т.д. Во многих случаях асимметричными являются молекулы комплексных соединений. При этом, в ряде случаев, роль одного из "заместителей" выполняет неподеленная пара электронов.

Пример оптически активного соединения – молочная кислота :

В молекуле молочной кислоты имеется хиральный центр, поэтому существуют два пространственных изомера, являющиеся зеркальными изомерами. Два стереоизомера, относящиеся друг к другу как предмет и его зеркальное отражение, называют антиподами, или энантиомерами. Антиподы отличаются только знаком оптического вращения.

По системе Фишера-Розанова конфигурации оптических изомеров подразделяют на два ряда: D и L. Необходимо помнить, что обозначения D и L не имеют ничего общего с направлением вращения плоскополяризованного света (правовращающий изомер можно обозначить буквой «d », а левовращающий – буквой «l », но не прописными буквами).

Если в стандартной проекционной формуле Фишера ОН-группа (или NH 2 для аминокислот) стоит справа, то данный стереоизомер относят к D ряду, если слева, то к L-ряду.

Правила работы с проекционными формулами Фишера

Нечётное количество перестановок (1, 3 …) или поворот на 90° (270 0) меняют конфигурацию на противоположную.

Чётное количество перестановок (2, 4 …) или поворот на 180° не меняют конфигурацию.

Пример:

Взаимная перестановка любых двух групп в проекциях Фишера приводит к превращению энантиомера в его зеркальное отображение:

D,L- номенклатуру продолжают применять для аминокислот, углеводов и многих других природных соединений. Однако данная система имеет ряд недостатков и в настоящее время для описания конфигураций новых соединений не применяется, а вместо нее используют систему Кана-Ингольда-Прелога (R,S-стереохимическая номенклатура).

Система Кана – Ингольда – Прелога. R,S-обозначение конфигураций

Для описания абсолютных конфигураций в настоящее время используется система Кана-Ингольда-Прелога (Р. Кан, Д. Ингольд и В. Прелог, 1966) или R-S – система обозначений пространственной конфигурации соединений, в которой R обозначает правый (rectus), а S – левый (sinister). Обозначения R и S помещают в скобках перед названием структуры. Следует понимать, что обозначения абсолютных конфигураций, не связаны какой то зависимостью с физическим явлением - вращением плоскополяризованного луча, то есть знак + или – может стоять у значка R или S. Вместе с тем, изображенная в соответствии с этими правилами абсолютная конфигурация должна точно соответствовать истинному строению данной молекулы, подтвержденному экспериментальными данными.

Возьмем соединение Xabcd содержащее один асимметрический центр X. Чтобы установить его конфигурацию, четыре заместителя у атома X следует пронумеровать и расположить в ряд в порядке уменьшения старшинства 1>2>3>4.

Заместители рассматриваются наблюдателем со стороны, наиболее удаленной от самого младшего заместителя (обозначенного номером 4). Если при этом направление убывания старшинства остальных заместителей (младший не учитывается) 1®2®3 совпадает с движением по часовой стрелке, то конфигурация данного асимметрического центра обозначают символом R, а если против часовой стрелки – символом S.

Определение порядка старшинства заместителей при асимметрическом атоме

(данное правило применимо и для анализа других изомеров, где необходимо рассмотреть старшинство заместителей, в частности для анализа конформаций и диастереомеров)

1. Отмечают атомный номер каждого из атомов, непосредственно присоединенных к рассматриваемому асимметрическому атому углерода.

2. Располагают эти атомы в порядке убывания атомного номера. Предпочтение по старшинству отдается атомам с более высокими атомными номерами. Если номера одинаковы (в случае изотопов), то более старшим считается атом с наибольшей атомной массой. Самый младший «заместитель» - неподеленная электронная пара. Таким образом, старшинство возрастает в ряду: неподеленная пара

3. Если с асимметрическим атомом непосредственно связаны два, три, все четыре одинаковых атома, порядок устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство. Порядок старшинства часто встречающихся заместителей у асимметрического углерода следующий: I, Br, Cl, SH, OH, NO 2 , NH 2 , COOR, COOH, CHO, CR 2 OH, CHOHR, CH 2 OH, C 6 H 5 , CH 2 R, CH 3 , H.

4. Заместитель с R-конфигурацией имеет преимущества перед заместителем с S-конфигурацией.

5. Кратные связи рассматриваются как несколько простых связей. Например, карбоксильную группу представляют как две связи C-O, двойную связь в алкенах – как две связи C-C, тройную связь – как три связи C-C, а нитрильную группу – как три связи C-N.

В этом соединении асимметрический атом связан с атомом хлора и тремя атомами углерода. Поскольку хлор имеет больший атомный номер, он является самым старшим. Для того чтобы расположить по старшинству остальные три заместителя, поступают следующим образом.

Выделяют "слои" атомов, постепенно удаляющиеся от асимметрического атома:

Так как атомы первого слоя одинаковы, переходят ко второму слою и рассматривают тройки атомов. Можно использовать такую запись троек атомов второго слоя, связанных с атомами углерода первого слоя: С(F,H,H), C(Cl,H,H), C(Br,H,H). Выделяют старший атом в каждой тройке и сравнивают их старшинство: F < Cl < Вr.

В таком же порядке изменяется и старшинство заместителей, в состав которых входят данные атомы.

Диастереомерия σ-Диастереомерия

Число стереоизомеров соединений с двумя и более асимметрическими центрами можно рассчитать по формуле: N=2 n , где N - число стереоизомеров,а n – число асимметрических атомов.

При рассмотрении 2-фтор-3-хлор-4-бромпентана можно убедиться, что количество изомеров 2 3 равно 8.

Пример:

Существует четыре стереоизомера для молекул с двумя асимметрическими атомами углерода, которые показаны на рисунке, на примере 3-хлорбутанола-2 -СН 3 СНОНСНСlCH 3 . Возникает ситуация когда молекулы в каждой паре изомеров А и В являются энантиомерами (оптическими изомерами). Если же мы сравним любой из изомеров группы А с любым стереоизомером группы В, то обнаружим, что они не являются зеркальными антиподами. Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами . σ- Диастереомеры, в отличие от энантиомеров имеют различные физико-химические свойства и, как правило, отличающиеся химические свойства.

Любой из энантиомеров А является диастереомером по отношению к энантиомерам В

Могут реализоваться случаи, когда число изомеров меньше предсказываемого формулой 2 n . Такие случаи встречаются, когда в структуре существуют одинаковые асимметрические центры, то есть центры с одинаковым набором атомов или групп атомов, например, в 2,3-дибромбутане:

Молекулы I и II хиральны. Нетрудно видеть, что проекции III и IV изображают одно и то же соединение: эти проекции полностью совмещаются друг с другом при повороте на 180° в плоскости листа. В проекциях III и IV легко обнаруживается плоскость симметрии, перпендикулярная центральной С-С-связи и проходящая через ее середину. В данном случае проекции III и IV содержат асимметрические центры, но не обладают хиральностью, то есть проекции III и IV это одна и та же молекула, перевернутая на 180°. Вещества, состоящие из таких молекул, называют мезо -формами. Мезо -форма не способна вращать плоскость поляризации света, то есть она оптически неактивна.

Согласно определению, любой из энантиомеров I и II является σ- диастереомером по отношению к мезо -форме, то есть они отличаются физико-химическими и химическими свойствами.

Эритро-трео обозначения σ-диастереомеров

В некоторых случаях для обозначенияσ-диастереомеров используются традиционно применяющиеся в стереохимии дескрипторыэритро - и трео -. При этом сравнивают расположение одинаковых заместителей при двух асимметрических атомах в проекции Фишера. Стереоизомеры, в которых одинаковые заместители при асимметрических атомах углерода расположены по одну сторону от вертикальной линии, называют эритро-изомерами . Если такие группы находятся по разные стороны от вертикальной линии, то говорят о трео-изомерах . В изомерах 3-хлорбутанола-2 (I) -(IV) такими реперными группами являются атомы водорода, и эти соединения получают следующие названия:

Приставки эритро - и трео - происходят от названий углеводов: треозы и эритрозы.

В случае соединений с большим числом асимметрических центров иногда применяют другие стереохимические дескрипторы, также происходящие от названий углеводов (рибо -, ликсо -, глюко - и т.п.).

Диастереомерия соединений содержащих кратные связи. π-Диастереомерия

Геометрическая изомерия – это стереоизомерия, обусловленная различным расположением заместителей вокруг двойных связей. Если оба заместителя располагаются по одну сторону от двойной связи, то это цис -изомер, если по разные строны, то это транс-изомер. Транс -измеры энергетически более устойчивы вследствие наименьшего взаимного отталкивания заместителей. Отметим, что геометрических изомеров не образуют соединения у который двойная связь располагается у концевого атома углерода. Пример:

Сложнее ситуация когда в алкене различные заместители. В современной номенклатуре правила последовательного старшинства применимы также и к описанию геометрических изомеров непредельных соединений. Заместители у каждого конца кратной связи при установлении старшинства должны рассматриваться отдельно. Если заместители, имеющие более высокое старшинство, расположены с одной и той же стороны двойной связи, соединению присваивают префикс Z (от немецкого zusammen – вместе), а если по разным сторонам, то префикс E (entgegen – напротив).

Фторхлорбромпропилен

Z , E -Номенклатура распространена и на прочие геометрические изомеры, в которых π-диастереомерия определяется наличием C=N –связи или к примеру C=P-связи. В качестве четвертого заместителя рассматривают n-электроны на атоме азота (нольвалентный заместитель).

Цис,транс -изомерия, а также и син,анти -изомерия распространена в химии не только на соединения с кратными связями, но и на циклические и каркасные соединения.

Пример решения задачи

Молекулы промышленно важного углеводорода А (D H 2 = 13) в присутствии катализаторов образуют различные олигомеры:

1. Напишите структурные формулы А E , учитывая, что
M A : M B : M C : M D : M E = 1: 2: 3: 3: 4.

Из углеводородов А и В были получены изомерные углеводороды I VI согласно приведенной ниже схеме превращений:

2. Напишите структурные формулы I V , F О . чтите, что превращения F в G и K в L – изомеризации. Помните, что разные буквы не могут обозначать одно и то же вещество.

Решение задачи

  1. Для упрощения расчета составим таблицу, обозначив как а – общий объем алкенов в исходной смеси:

Конечный объем смеси = 0,25а + (7,17 − 1,75а ) + 0,75а = 5,15. Тогда а = 2,693 л » 2,7 л.

2. М (C n H 2 n ) = 10,1 / (2,7 / 22,4) = 84, то есть молекулярная формула C 6 H 12 .

3. Молекулы С содержат асимметрический атом углерода, то есть атом с четырьмя разными заместителями. Для алкенов C 6 H 12 это возможно лишь для 3-метилпентена-1:

При гидрировании С превращается в 3-метилпентан. Существует еще только 2 структурно изомерных алкена, также образующих этот продукт в ходе гидрирования:

На основании результата взаимодействия алкенов с HBr невозможно различить А и В , поскольку, согласно условию, основным продуктом в реакциях всех трех углеводородов является бромид Е . Однако взаимодействие с HBr в присутствие перекиси (ROOR ) протекает против правила Марковникова и приводит к образованию разных продуктов:

Бромид С1 под действием основания отщепляет HBr , превращаясь обратно в С .Точно так же, в третьем варианте отщеплениеHBr возможно единственным способом с образованием исходного алкена. Следовательно, это соединение А1 .ЭлиминированиеHBr возможно двумя путями только для продукта второй реакции:

Путь а – это обычное элиминирование по правилу Зайцева. Он приводит к образованию исходного алкена. Путь b – элиминирование «по Гофману». Протекание элиминирования по этому пути объясняется тем, что трет -бутилат калия – объемное основание. Поэтому атака на более стерически доступный атом водорода СН 3 группы протекает быстрее, чем атака на менее доступный водород группы СН. Итак, структуры соединений:

Основной продукт взаимодействия А , В и С с HBr имеет структуру:

Это результат обычного электрофильного присоединения HBr к А или В по правилу Марковникова. Из С соединение Е получается в результате перегруппировки первоначально образующегося вторичного карбокатиона в более устойчивый третичный:

4. Геометрические изомеры возможны для В :

Пространственные изомеры (стереоизомеры) имеют одинаковый качественный и количественный состав и одинаковый порядок связывания атомов (химическое строение), но разное пространственное расположение атомов в молекуле.

Выделяют два вида пространственной изомерии: оптическая и геометрическая.

Оптическая изомерия

В оптической изомерии различные фрагменты молекул располагаются по-разному относительно некоторого атома, т.е. имеют различную конфигурацию. Например:

Такие молекулы не являются идентичными, они относятся друг к другу как предмет и его зеркальное отображение и называются энантиомерами.

Энантиомеры обладают свойствами хиральности . Простейший случай хиральности обусловлен наличием в молекуле центра хиральности (хирального центра), которым может служить атом, содержащий четыре различных заместителя. У такого атома отсутствуют элементы симметрии. В связи с этим его также называют асимметрическим.

Чтобы установить, является ли молекула хиральной, необходимо построить ее модель, модель ее зеркального изображения (рис. 3.1, а) и выяснить, совмещаются ли они в пространстве. Если не совмещаются - молекула хиральна (рис. 3.1, б), если совмещаются - ахиральна.

Рис. 3.1.

Все химические свойства энантиомеров идентичны. Одинаковы и их физические свойства за исключением оптической активности: одна форма вращает плоскость поляризации света влево , другая - на тот же по величине угол вправо .

Смесь равных количеств оптических антиподов ведет себя как индивидуальное химическое соединение, лишенное оптической активности и сильно отличающееся по физическим свойствам от каждого из антиподов. Такое вещество называется рацемической смесью , или рацематом.

При всех химических превращениях, при которых образуются новые асимметричные атомы углерода, всегда получаются рацематы. Существуют специальные приемы разделения рацематов на оптически активные антиподы.

В случае наличия в молекуле нескольких асимметрических атомов возможна ситуация, когда пространственные изомеры не будут оптическими антиподами. Например:


Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами.

Частный случай диастереомеров - геометрические (цис- траис-) изомеры.

Геометрическая изомерия

Геометрическая (цис-транс-) изомерия свойственна соединениям, содержащим двойные связи (С=С, C=N и др.), а также неароматическим циклическим соединениям и обусловлена невозможностью свободного вращения атомов вокруг двойной связи или в цикле. Заместители в геометрических изомерах могут быть расположены по одну сторону плоскости двойной связи или цикла - ^wc-положение, либо по разные стороны - тирш/с-положение (рис. 3.2).


Рис. 3.2. Дис-изомер (а) и транс -изомер (б)

Геометрические изомеры обычно существенно различаются по физическим свойствам (температурам кипения и плавления, растворимости, дипольным моментам, термодинамической устойчивости и др.)

  • Термин «хиральность» означает, что два предмета находятся в такомотношении друг к другу, как левая и правая руки (от греч. chair - рука),т.е. представляют собой зеркальные изображения, не совпадающие при попытке совместить их в пространстве.